Gateway School District Curriculum Map

Curriculum Map: Mathematics

Course: Geometry
Grade(s): 9-12

Unit 1: Tools of Geometry

Brief Summary of Unit

Using inductive reasoning to formulate conjectures will promote an intuitive understanding of principles that are later presented as postulates and theorems.

Coordinate geometry will be used throughout the course to solve problems and complete proofs. The concepts of perimeter, circumference, and area reviewed here will be studied in more detail in later chapters.

Students are asked to identify various figures and express the relationship presented in postulates. Memorizing definitions and postulates may be counterproductive if students are able only to repeat them but are unable to apply them to problem situations. Concept recognition and application are the key skills.

Stage One-Desired Results

Established Goals: (Standards of Learning, Content Standards)

1. Complete patterns using inductive reasoning and make conjectures
2. Name basic geometric figures and identify types of angles
3. Find the length of segments using the ruler and segment addition postulates
4. Find the measure of unknown angles using the angle addition postulate
5. Find the distance or midpoint between 2 points using the distance or midpoint formula
6. Find perimeter and area of squares, rectangles, and circles using the formulas

Understandings:

1. Lengths of segments can be found using the ruler postulate or the distance formula depending on where the segment is (space or coordinate plane).
2. Other formulas and properties can help in finding the perimeter and area of various figures.

Essential Questions:

1. What is the process of using inductive reasoning?
2. What are the basic terms of geometry?
3. What are the relationships between the basic building blocks of geometry?
4. What are segments and rays and parallel lines?
5. Geometry is a mathematical system built on accepted facts, basic terms, and definitions.
6. Special angle pairs can be used to identify geometric relationships and to find angle measures.
7. Formulas can be used to find the midpoint and length of any segment in the coordinate plane.
8. Perimeter and area are two different ways of measuring the size of geometric figures.

Stage Two-Assessment Evidence

Performance Tasks:

Other Evidence: :(quizzes, tests and so on)

Stage Three-Learning Plan

Unit 2: Reasoning and Proof

Brief Summary of Unit

Most of this chapter emphasizes hypotheses and conclusions in deductive reasoning. Students will apply the basic rules of deduction to solve algebraic equations, justifying each step. The chapter culminates in simple paragraph proofs involving intuitively obvious theorems about angle relationships. This chapter sets the stage for subsequent proofs by presenting proofs as convincing arguments, similar to the justifications students regularly employ in everyday life.

Stage One-Desired Results

Established Goals: (Standards of Learning, Content Standards)

1. Recognize and write conditional statements and biconditional statements
2. Write the converse of conditional statements
3. Recognize good definitions
4. Connect reasoning in algebra and geometry
5. Identify angle pairs (vertical, adjacent, supplementary and complementary angles)

Understandings:

1. Hypothesis and conclusions and two key parts of conditional, converse and biconditional statements.
2. Definitions in mathematics must be biconditional statements
3. Proofs are simply convincing logical arguments in which the specified conclusion necessarily follows from known facts.

Essential Questions:

1. How do you write a good definition?
2. How do you write a conditional, converse and biconditional statement?

	3. How do you justify steps in an algebraic equation?
Stage Two-Assessment Evidence	
Performance Tasks:	
Other Evidence: :(quizzes, tests and so on)	
Stage Three-Learning Plan	
Unit 3: Parallel \& Perpendicular Lines	
Brief Summary of Unit	
Students will build on their knowledge of angles to prove and use properties of parallel lines. They will use these properties to prove that the sum of the measures of the angles in a triangle is 180, and to find the formula for the sum of the angle measures in a polygon having n sides. Students will learn the relationship that different forms of linear equations have with the slopes of parallel and perpendicular lines.	
Stage One-Desired Results	
Established Goals: (Standards of Learning, Conte 6. Graph linear equations / functions 7. Write linear equations using various given 8. Make predictions from linear models 9. Write linear equation of parallel and perpe 10. Identify the different special pairs of angles 11. (alternate interior, alternate exterior, same	Standards) formation icular lines. ormed by two lines and a transversal. ide interior, corresponding, vertical, linear pairs)
Understandings: 4. Linear equations represent and model real world situations. 5. Comparing the slopes of two lines can show whether the lines are parallel or perpendicular. 6. A line can be graphed and its equation written when certain facts	Essential Questions: 4. How do you prove that two lines are parallel or perpendicular?

about the line, such as its slope and a point on a line are known. 7. Predictions can be made about real world situations using linear relationships. 8. Not all lines and not all planes intersect. 9. When a line intersects two or more lines, the angles formed at intersection points create special angle pairs. 10. Certain angle pairs can be used to decide whether two lines are parallel. 11. The relationships of two lines to a third line can be used to decide whether two lines are parallel or perpendicular to each other.	5. How do you write an equation of a line in the coordinate plane?
Stage Two-Assessment Evidence	
Performance Tasks:	
Other Evidence: :(quizzes, tests and so on)	
Stage Three-Learning Plan	
Unit 4: Congruent Triangles	
Brief Summary of Unit	
Students will use their knowledge of corresponding parts of congruent polygons to study and apply postulates and theorems related to triangle congruence. These included SSS, SAS, ASA, AAS, and HL, and the Isosceles Triangle Theorem.	
Stage One-Desired Results	
Established Goals: (Standards of Learning, Content Standards)	
1. Identify congruent polygons and name the corresponding parts 2. Identify congruent triangles using the congruence postulates (SSS, SAS, ASA, AAS), HL Theorem 3. Use CPCTC to identify that corresponding parts of congruent triangles are congruent 4. Identify an isosceles triangle using the theorem and its converse 5. Find unknown parts of triangles using the isosceles triangle theorem and its converse	

Understandings: 1. Various properties and theorems can be used in addition to the congruence postulates and theorems in order to identify congruent polygons. 2. Comparing the corresponding parts of two figures can show whether the figures are congruent. 3. Two triangles can be proven to be congruent without having to show that all corresponding parts are congruent. 4. Unknown parts of triangles can be found using CPCTC, properties, and theorems of triangles. 5. The angles and sides of isosceles and equilateral triangles have special relationships.	Essential Questions: 1. How do you identify corresponding parts of congruent triangles? 2. How do you show that two triangles are congruent? 3. How can you tell whether a triangle is isosceles or equilateral?
Stage Two-Assessment Evidence	
Performance Tasks:	
Other Evidence: :(quizzes, tests and so on)	
Stage Three-Learning Plan	

Unit 5: Triangle Relationships

Brief Summary of Unit

This chapter will focus on presenting and proving relationships within a triangle that students can, in turn, use to prove relationships within other figures. Some of the relationships involve midsegments, angle bisectors, perpendicular bisectors, altitudes, medians, and inequalities.

Stage One-Desired Results

Established Goals: (Standards of Learning, Content Standards)

1. Use properties of midsegments to solve problems
2. Use properties of perpendicular bisectors and angle bisectors
3. Identify properties of perpendicular bisectors, angle bisectors, medians, and altitudes
4. Use inequalities involving angles of triangles
5. Use inequalities involving sides of triangles

Essential Questions:

1. How do you use coordinate geometry to find relationships within triangles?

1. Perpendicular bisectors, angle bisectors, medians, and altitudes have similarities and differences. 2. The measures of the angles of a triangle are related to the lengths of the opposite sides. 3. Properties and theorems of midsegments, perpendicular bisectors, angle bisectors, medians, and altitudes can be used to find unknown lengths and angle measures in triangles. 4. In triangles that have two pairs of congruent sides, there is a relationship between the included angles and the third pair of sides.	2. How do you solve problems that involve measurements of triangles? 3. How do you write indirect proofs?
Stage Two-Assessment Evidence	
Performance Tasks:	
Other Evidence: :(quizzes, tests and so on)	
Stage Three-Learning Plan	
Unit 6: Quadrilaterals	
Brief Summary of Unit	
Student apply triangle relationships, algebraic techniques, and methods of proof to the study of quadrilaterals. A study of parallelograms leads to an analysis of special parallelograms (rhombuses, rectangles, and squares), trapezoids, and kites.	
Stage One-Desired Results	
Established Goals: (Standards of Learning, Conten 1. Define and classify special types of q 2. Use relationships among sides and a 3. Use relationships involving diagonal 4. Determine whether a quadrilateral is 5. Use properties of diagonals of rhomb and kites.	Standards) adrilaterals ong angles of parallelograms of parallelograms or transversals a parallelogram and specify a type of parallelogram uses and rectangles and properties of trapezoids
Understandings: 1. Given information can be used to classify quadrilaterals. 2. Parallelograms have special properties regarding their sides, angles, and diagonals.	Essential Questions: 1. How can you find the sum of the measures of polygon angles? 2. How can you classify quadrilaterals?

3. If a quadrilateral's sides, angles, and diagonals have certain properties, it can be shown that the quadrilateral is a parallelogram. 4. Variables can be used to name the coordinates of a figure in the coordinate plane. This allows relationships to be shown to be true for a general case.	3. How can you use coordinate geometry to prove general relationships?
Stage Two-Assessment Evidence	
Performance Tasks:	
Other Evidence: :(quizzes, tests and so on)	
Stage Three-Learning Plan	
Unit 7: Area	
Brief Summary of Unit	
Students will use concepts from their study of triangles and quadrilaterals to develop area formulas, first for quadrilaterals and then for circles. Special area formulas will be derived for parallelograms, rhombuses, trapezoids, and kites. Students will consider arcs and sectors of circles and apply their areas to geometric probability.	
Stage One-Desired Results	
Established Goals: (Standards of Learning, Content 1. Calculate the area of various polygons 2. Calculate the area of a circle 3. Find missing dimensions of diagrams 4. Calculate geometric probability given 5. Calculate lengths of arcs in circles 6. Calculate areas of sectors in circles	Standards) using formulas a figure
Understandings: 1. Missing parts of right triangles can be found using the Pythagorean Theorem or properties of special right triangles. 2. In some cases, dimensions required to calculate area must be derived using other formulas. 3. Geometric probability is used to make decisions about complex problems.	Essential Questions: 1. How do you find the area of polygon? 2. How do you find the circumference of a circle? 3. How do you find the area of a circle? 4. How do perimeters and areas of similar polygons compare?

| 4.Ratios can be used to compare
 the perimeters and areas of
 similar figures.
 5.
 The area formula for a rectangle
 can be used to derive the area
 formulas for triangles,
 parallelograms, trapezoids, kites,
 and circles.. |
| :--- | :--- |

3. The ratio of similarity in similar figures can be used to find unknown lengths, the perimeter ratio (perimeter), and area ratio (area). 4. Ratios and proportions can be used to decide whether two polygons are similar and to find unknown side lengths of similar figures. 5. Drawing in the altitude to the hypotenuse of a right triangle forms three pairs of similar right triangles. 6. When two or more parallel lines intersect other lines, proportional segments are formed.	
Stage Two-Assessment Evidence	
Performance Tasks:	
Other Evidence: :(quizzes, tests and so on)	
Stage Three-Learning Plan	
Unit 9 Surface Area \& Volume	
Brief Summary of Unit	
Students apply surface area and volume formulas for prisms, cylinders, pyramids, cones and spheres.	
Stage One-Desired Results	
Established Goals: (Standards of Learning, Conten 1. Identify the parts on a polyhedron 2. Find unknown number of faces, edge 3. Find the surface area and volume of 4. Find the volume of composite figures 5. Find the slant height or height in pyr	Standards) or vertices using Euler's Formula risms, cylinders, pyramids, cones, and spheres mids and cones using the Pythagorean Theorem
Understandings: 1. Surface area and volume of threedimensional objects can be used to solve complex problems. 2. A three-dimensional figure can be analyzed by describing the	Essential Questions: 1. How can you determine the intersection of solid and a plane? 2. How do you find the surface area and volume of a solid?

	relationships among its vertices, edges, and faces.
3.The surface area of a three- dimensional figure is equal to the sum of the areas of each surface of the figure. 4. The volume of a pyramid is related to the volume of a prism with the same base and height. 5.Ratios can be used to compare the areas and volumes of similar solids. similar solids compare? Performance Tasks: Other Evidence: :(quizzes, tests and so on) Swo-Assessment Evidence\quadStage Three-Learning Plan	

Unit 10 Circles

Brief Summary of Unit	
Students will build on their knowledge of circles by studying properties of tangents, secants, chords, and arcs. They will study angles formed by chords, tangents, and secants, their relationships to intercepted arcs, and the relationship among segments of intersecting chords, tangents and secants.	
Stage One-Desired Results	
Established Goals: (Standards of Learning, Content 1. Tangent Theorem and its converse 2. Find the missing lengths of a triangle 3. Find the distance from the center of the theorems 4. Find missing angle and arc measures 5. Find missing segment lengths using	Standards) hat is circumscribed about the circle e circle to the chord or the length of a chord using sing the inscribed angle theorem e theorem about segments in circles
Understandings: 1. Missing angle measures, arc measures, and segment lengths can be found using the various theorems. 2. A radius of a circle and the tangent that intersects the endpoint of the radius on the circle have a special relationship. 3. Information about congruent parts of a circle (or congruent	Essential Questions: 1. How can you prove relationships between angles and arcs in a circle? 2. When lines intersect a circle, or within a circle, how do you find the measures of resulting angles, arcs, and segments? 3. How do you find the equation of a circle in the coordinate plane?

	circles) can be used to find information about other parts of the circle (or circles). 4. The information of the equation of a circle allows the circle to be graphed. The equation of a circle can be written if its center and radius are known.
Stage Two-Assessment Evidence	
Performance Tasks:	
Other Evidence: :(quizzes, tests and so on)	
Stage Three-Learning Plan	

